Álgebra lineal Ejemplos

Encontrar el dominio 16x^2+25y^2+32x^2-100y-284=0
Paso 1
Suma y .
Paso 2
Usa la fórmula cuadrática para obtener las soluciones.
Paso 3
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 4
Simplifica.
Toca para ver más pasos...
Paso 4.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 4.1.1
Eleva a la potencia de .
Paso 4.1.2
Multiplica por .
Paso 4.1.3
Aplica la propiedad distributiva.
Paso 4.1.4
Multiplica por .
Paso 4.1.5
Multiplica por .
Paso 4.1.6
Suma y .
Paso 4.1.7
Factoriza de .
Toca para ver más pasos...
Paso 4.1.7.1
Factoriza de .
Paso 4.1.7.2
Factoriza de .
Paso 4.1.7.3
Factoriza de .
Paso 4.1.8
Reescribe como .
Toca para ver más pasos...
Paso 4.1.8.1
Factoriza de .
Paso 4.1.8.2
Reescribe como .
Paso 4.1.8.3
Agrega paréntesis.
Paso 4.1.9
Retira los términos de abajo del radical.
Paso 4.2
Multiplica por .
Paso 4.3
Simplifica .
Paso 5
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 5.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.1.1
Eleva a la potencia de .
Paso 5.1.2
Multiplica por .
Paso 5.1.3
Aplica la propiedad distributiva.
Paso 5.1.4
Multiplica por .
Paso 5.1.5
Multiplica por .
Paso 5.1.6
Suma y .
Paso 5.1.7
Factoriza de .
Toca para ver más pasos...
Paso 5.1.7.1
Factoriza de .
Paso 5.1.7.2
Factoriza de .
Paso 5.1.7.3
Factoriza de .
Paso 5.1.8
Reescribe como .
Toca para ver más pasos...
Paso 5.1.8.1
Factoriza de .
Paso 5.1.8.2
Reescribe como .
Paso 5.1.8.3
Agrega paréntesis.
Paso 5.1.9
Retira los términos de abajo del radical.
Paso 5.2
Multiplica por .
Paso 5.3
Simplifica .
Paso 5.4
Cambia a .
Paso 5.5
Factoriza de .
Toca para ver más pasos...
Paso 5.5.1
Factoriza de .
Paso 5.5.2
Factoriza de .
Paso 5.5.3
Factoriza de .
Paso 6
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 6.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 6.1.1
Eleva a la potencia de .
Paso 6.1.2
Multiplica por .
Paso 6.1.3
Aplica la propiedad distributiva.
Paso 6.1.4
Multiplica por .
Paso 6.1.5
Multiplica por .
Paso 6.1.6
Suma y .
Paso 6.1.7
Factoriza de .
Toca para ver más pasos...
Paso 6.1.7.1
Factoriza de .
Paso 6.1.7.2
Factoriza de .
Paso 6.1.7.3
Factoriza de .
Paso 6.1.8
Reescribe como .
Toca para ver más pasos...
Paso 6.1.8.1
Factoriza de .
Paso 6.1.8.2
Reescribe como .
Paso 6.1.8.3
Agrega paréntesis.
Paso 6.1.9
Retira los términos de abajo del radical.
Paso 6.2
Multiplica por .
Paso 6.3
Simplifica .
Paso 6.4
Cambia a .
Paso 6.5
Factoriza de .
Toca para ver más pasos...
Paso 6.5.1
Factoriza de .
Paso 6.5.2
Factoriza de .
Paso 6.5.3
Factoriza de .
Paso 7
La respuesta final es la combinación de ambas soluciones.
Paso 8
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 9
Resuelve
Toca para ver más pasos...
Paso 9.1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 9.1.1
Divide cada término en por .
Paso 9.1.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 9.1.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 9.1.2.1.1
Cancela el factor común.
Paso 9.1.2.1.2
Divide por .
Paso 9.1.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 9.1.3.1
Divide por .
Paso 9.2
Resta de ambos lados de la desigualdad.
Paso 9.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 9.3.1
Divide cada término de por . Cuando multipliques o dividas ambos lados de una desigualdad por un valor negativo, cambia la dirección del signo de desigualdad.
Paso 9.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 9.3.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 9.3.2.2
Divide por .
Paso 9.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 9.3.3.1
Divide por .
Paso 9.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Paso 9.5
Simplifica la ecuación.
Toca para ver más pasos...
Paso 9.5.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 9.5.1.1
Retira los términos de abajo del radical.
Paso 9.5.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 9.5.2.1
Simplifica .
Toca para ver más pasos...
Paso 9.5.2.1.1
Reescribe como .
Toca para ver más pasos...
Paso 9.5.2.1.1.1
Factoriza de .
Paso 9.5.2.1.1.2
Reescribe como .
Paso 9.5.2.1.2
Retira los términos de abajo del radical.
Paso 9.5.2.1.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 9.6
Escribe como una función definida por partes.
Toca para ver más pasos...
Paso 9.6.1
Para obtener el intervalo de la primera parte, obtén dónde el interior del valor absoluto no es negativo.
Paso 9.6.2
En la parte donde no es negativa, elimina el valor absoluto.
Paso 9.6.3
Para obtener el intervalo de la segunda parte, obtén dónde el interior del valor absoluto es negativo.
Paso 9.6.4
En la parte donde es negativa, elimina el valor absoluto y multiplica por .
Paso 9.6.5
Escribe como una función definida por partes.
Paso 9.7
Obtén la intersección de y .
Paso 9.8
Resuelve cuando .
Toca para ver más pasos...
Paso 9.8.1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 9.8.1.1
Divide cada término de por . Cuando multipliques o dividas ambos lados de una desigualdad por un valor negativo, cambia la dirección del signo de desigualdad.
Paso 9.8.1.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 9.8.1.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 9.8.1.2.2
Divide por .
Paso 9.8.1.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 9.8.1.3.1
Mueve el negativo del denominador de .
Paso 9.8.1.3.2
Reescribe como .
Paso 9.8.1.3.3
Multiplica por .
Paso 9.8.2
Obtén la intersección de y .
Paso 9.9
Obtén la unión de las soluciones.
Paso 10
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 11